organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Bromophenyl)-2-oxoethyl 4-methylbenzoate

Hoong-Kun Fun,^a* Tara Shahani,^a B. Garudachari,^b Arun M. Isloor^b and M. N. Satyanarayan^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, ^bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and CDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India

Correspondence e-mail: hkfun@usm mv

Received 25 October 2011; accepted 28 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.074; data-to-parameter ratio = 21.6.

The title compound, C₁₆H₁₃BrO₃, consists of a toluene ring and a bromobenzene ring which are linked together by a 2oxopropyl acetate group. The dihedral angle formed between the toluene and bromobenzene rings is $80.70(7)^{\circ}$. In the crystal, intermolecular $C-H \cdots O$ hydrogen bonds link the molecules into a three-dimensional network.

Related literature

For applications of phenacyl benzoate derivatives, see: Rather & Reid (1919); Judefind & Reid (1920); Gandhi et al. (1995); Huang et al. (1996); Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006). For a related structure, see: Fun et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data C16H13BrO3 $M_r = 333.17$ Monoclinic, $P2_1/c$ a = 5.8368 (2) Å b = 8.3438 (3) Å

 $\mu = 3.03 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker SMART APEXII CCD	14735 measured reflections
area-detector diffractometer	3936 independent reflections
Absorption correction: multi-scan	3395 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.026$
$T_{\min} = 0.311, T_{\max} = 0.707$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	182 parameters
$wR(F^2) = 0.074$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
3936 reflections	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

 $0.50 \times 0.14 \times 0.12 \text{ mm}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$C16-H16A\cdots O2^{i}$	0.98	2.42	3.355 (2)	160	
$C16-H16B\cdots O3^{ii}$	0.98	2.53	3.451 (2)	157	

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5125).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.
- Fun, H.-K., Shahani, T., Garudachari, B., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2682.
- Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.
- Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136
- Judefind, W. L. & Reid, E. E. (1920). J. Am. Chem. Soc. 42, 1043-1055.
- Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.
- Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.
- Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.
- Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2011). E67, o3154 [doi:10.1107/S1600536811045272]

2-(4-Bromophenyl)-2-oxoethyl 4-methylbenzoate

H.-K. Fun, T. Shahani, B. Garudachari, A. M. Isloor and M. N. Satyanarayan

Comment

In organic chemistry, phenacyl benzoate is a derivative of an acid which is formed by the reaction between an acid and a phenacyl bromide. They find applications in the field of synthetic chemistry (Rather & Reid, 1919; Huang *et al.*, 1996; Gandhi *et al.*, 1995) such as in the synthesis of oxazoles, imidazoles, benzoxazepines. They are also useful as photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka *et al.*, 2002; Litera *et al.*, 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound was synthesized to study its crystal structure.

The title compound, (Fig. 1), consists of a toluene ring (C10–C16) and a bromobenzene ring (C1–C6/Br1) which are linked together by a 2-oxopropyl acetate group (C7–C9/O1–O3). The dihedral angle formed between the toluene and bromobenzene rings is 80.70 (7)%. The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to these closely related structure (Fun *et al.*, 2011).

In the crystal packing (Fig. 2), intermolecular C16—H16A···O2 and C16—H16B···O3 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Experimental

The mixture of 4-methylbenzoic acid (1.0 g, 0.0073 mol), potassium carbonate (1.10 g, 0.0080 mol) and 2-bromo-1-(4-bromophenyl)ethanone (2.02 g, 0.0073 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, the separated yellow needle-shaped crystals of 2-(4-bromophenyl)-2-oxoethyl 4-methylbenzoate were collected by filtration. Compound was recrystallized from ethanol. Yield: 2.22 g, 90.98%. M.p.: 425–426 K (Judefind & Reid, 1920).

Refinement

All the H atoms were positioned geometrically [C-H = 0.9500-0.9900 Å] and were refined using a riding model, with $U_{iso}(H) = 1.2 \text{ or } 1.5U_{iso}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The crystal packing of the title compound, viewed along *a* axis. Intermolecular hydrogen bonds linked the molecules into three-dimensional network.

2-(4-Bromophenyl)-2-oxoethyl 4-methylbenzoate

Crystal data

$C_{16}H_{13}BrO_3$
$M_r = 333.17$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 5.8368 (2) Å
<i>b</i> = 8.3438 (3) Å
c = 27.9684 (8) Å
$\beta = 95.177 \ (1)^{\circ}$
$V = 1356.54 (8) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	3936 independent reflections
Radiation source: fine-focus sealed tube	3395 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ϕ and ω scans	$\theta_{\text{max}} = 30.0^\circ, \theta_{\text{min}} = 1.5^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -8 \rightarrow 8$
$T_{\min} = 0.311, \ T_{\max} = 0.707$	$k = -11 \rightarrow 11$
14735 measured reflections	$l = -39 \rightarrow 39$

F(000) = 672 $D_{\rm x} = 1.631 \text{ Mg m}^{-3}$

 $\theta = 2.6-32.4^{\circ}$ $\mu = 3.03 \text{ mm}^{-1}$ T = 100 KNeedle, yellow $0.50 \times 0.14 \times 0.12 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6134 reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.074$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0324P)^2 + 1.2242P]$ where $P = (F_o^2 + 2F_c^2)/3$
3936 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$
182 parameters	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	1.36051 (3)	0.73030 (2)	1.049704 (6)	0.02370 (7)
01	0.6371 (2)	1.02498 (16)	0.79328 (4)	0.0188 (3)
O2	0.5266 (2)	0.82885 (16)	0.86329 (5)	0.0228 (3)
O3	0.3804 (2)	1.16704 (15)	0.83172 (4)	0.0193 (3)
C1	1.0857 (3)	0.9333 (2)	0.92209 (6)	0.0166 (3)
H1A	1.1334	1.0088	0.8996	0.020*
C2	1.2317 (3)	0.8944 (2)	0.96256 (6)	0.0177 (3)
H2A	1.3795	0.9423	0.9677	0.021*
C3	1.1589 (3)	0.7853 (2)	0.99509 (6)	0.0171 (3)
C4	0.9420 (3)	0.7134 (2)	0.98883 (6)	0.0184 (3)
H4A	0.8935	0.6401	1.0119	0.022*
C5	0.7995 (3)	0.7520 (2)	0.94806 (7)	0.0179 (3)
H5A	0.6523	0.7032	0.9429	0.022*
C6	0.8693 (3)	0.86164 (19)	0.91454 (6)	0.0154 (3)
C7	0.7111 (3)	0.8959 (2)	0.87074 (6)	0.0161 (3)
C8	0.7881 (3)	1.0191 (2)	0.83609 (6)	0.0177 (3)
H8A	0.7936	1.1258	0.8516	0.021*
H8B	0.9453	0.9925	0.8279	0.021*
C9	0.4324 (3)	1.09906 (19)	0.79604 (6)	0.0150 (3)
C10	0.2867 (3)	1.08669 (19)	0.74980 (6)	0.0146 (3)
C11	0.0783 (3)	1.1700 (2)	0.74432 (6)	0.0161 (3)
H11A	0.0369	1.2395	0.7690	0.019*
C12	-0.0687 (3)	1.1510 (2)	0.70261 (6)	0.0173 (3)
H12A	-0.2101	1.2081	0.6991	0.021*
C13	-0.0108 (3)	1.0493 (2)	0.66597 (6)	0.0155 (3)
C14	0.2036 (3)	0.9726 (2)	0.67110 (6)	0.0168 (3)
H14A	0.2490	0.9076	0.6457	0.020*
C15	0.3505 (3)	0.9897 (2)	0.71243 (6)	0.0166 (3)
H15A	0.4943	0.9357	0.7154	0.020*
C16	-0.1776 (3)	1.0169 (2)	0.62159 (6)	0.0178 (3)
H16A	-0.2907	1.1038	0.6176	0.027*
H16B	-0.2572	0.9150	0.6256	0.027*
H16C	-0.0917	1.0111	0.5931	0.027*
4				

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

 U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}

supplementary materials

Br1	0.02204 (10)	0.03193 (11)	0.01642 (9)	0.00268 (7)	-0.00216 (6)	0.00657 (7)
01	0.0149 (6)	0.0279 (6)	0.0133 (6)	0.0042 (5)	-0.0009 (5)	0.0007 (5)
O2	0.0189 (6)	0.0216 (6)	0.0267 (7)	-0.0048 (5)	-0.0049 (5)	0.0034 (5)
O3	0.0223 (6)	0.0201 (6)	0.0151 (6)	0.0030 (5)	0.0003 (5)	-0.0024 (5)
C1	0.0174 (8)	0.0179 (7)	0.0143 (8)	-0.0008 (6)	0.0001 (6)	0.0017 (6)
C2	0.0166 (8)	0.0202 (8)	0.0159 (8)	-0.0012 (6)	0.0000 (6)	-0.0002 (6)
C3	0.0179 (8)	0.0201 (8)	0.0130 (7)	0.0040 (6)	0.0006 (6)	0.0005 (6)
C4	0.0183 (8)	0.0190 (8)	0.0183 (8)	0.0017 (6)	0.0045 (6)	0.0039 (6)
C5	0.0153 (8)	0.0177 (8)	0.0207 (8)	0.0006 (6)	0.0014 (6)	0.0017 (6)
C6	0.0168 (8)	0.0142 (7)	0.0148 (7)	0.0009 (6)	-0.0003 (6)	-0.0008 (6)
C7	0.0166 (8)	0.0152 (7)	0.0160 (8)	0.0020 (6)	-0.0005 (6)	-0.0011 (6)
C8	0.0155 (8)	0.0220 (8)	0.0150 (8)	-0.0003 (6)	-0.0025 (6)	0.0022 (6)
C9	0.0157 (7)	0.0138 (7)	0.0154 (8)	-0.0005 (6)	0.0007 (6)	0.0022 (6)
C10	0.0154 (7)	0.0146 (7)	0.0136 (7)	-0.0004 (6)	0.0012 (6)	0.0011 (6)
C11	0.0168 (8)	0.0177 (7)	0.0139 (7)	0.0011 (6)	0.0014 (6)	-0.0003 (6)
C12	0.0153 (8)	0.0188 (8)	0.0176 (8)	0.0031 (6)	0.0006 (6)	0.0023 (6)
C13	0.0167 (8)	0.0164 (7)	0.0134 (7)	-0.0033 (6)	0.0020 (6)	0.0036 (6)
C14	0.0204 (8)	0.0154 (7)	0.0151 (8)	-0.0001 (6)	0.0036 (6)	-0.0018 (6)
C15	0.0162 (8)	0.0163 (7)	0.0175 (8)	0.0018 (6)	0.0016 (6)	0.0005 (6)
C16	0.0164 (8)	0.0174 (7)	0.0198 (8)	0.0002 (6)	0.0018 (6)	0.0033 (6)

Geometric parameters (Å, °)

Br1—C3	1.8986 (16)	C8—H8A	0.9900
O1—C9	1.354 (2)	C8—H8B	0.9900
O1—C8	1.4222 (19)	C9—C10	1.486 (2)
O2—C7	1.215 (2)	C10—C11	1.397 (2)
O3—C9	1.210 (2)	C10—C15	1.399 (2)
C1—C2	1.393 (2)	C11—C12	1.394 (2)
C1—C6	1.396 (2)	C11—H11A	0.9500
C1—H1A	0.9500	C12—C13	1.395 (2)
C2—C3	1.381 (2)	C12—H12A	0.9500
C2—H2A	0.9500	C13—C14	1.402 (2)
C3—C4	1.397 (3)	C13—C16	1.531 (2)
C4—C5	1.387 (2)	C14—C15	1.383 (2)
C4—H4A	0.9500	C14—H14A	0.9500
C5—C6	1.397 (2)	C15—H15A	0.9500
С5—Н5А	0.9500	C16—H16A	0.9800
С6—С7	1.494 (2)	C16—H16B	0.9800
С7—С8	1.509 (2)	C16—H16C	0.9800
С9—О1—С8	116.81 (14)	O3—C9—O1	123.32 (15)
C2—C1—C6	120.12 (16)	O3—C9—C10	125.74 (16)
С2—С1—Н1А	119.9	O1—C9—C10	110.94 (14)
C6C1H1A	119.9	C11—C10—C15	119.59 (15)
C3—C2—C1	119.15 (16)	C11—C10—C9	119.01 (15)
С3—С2—Н2А	120.4	C15—C10—C9	121.37 (15)
C1—C2—H2A	120.4	C12—C11—C10	119.97 (16)
C2—C3—C4	121.99 (16)	C12—C11—H11A	120.0
C2—C3—Br1	118.94 (13)	C10-C11-H11A	120.0

C4—C3—Br1	119.08 (13)	C11—C12—C13	120.80 (16)
C5—C4—C3	118.20 (16)	C11—C12—H12A	119.6
С5—С4—Н4А	120.9	C13—C12—H12A	119.6
C3—C4—H4A	120.9	C12—C13—C14	118.42 (15)
C4—C5—C6	120.94 (16)	C12—C13—C16	121.62 (15)
С4—С5—Н5А	119.5	C14—C13—C16	119.94 (15)
С6—С5—Н5А	119.5	C15—C14—C13	121.25 (16)
C1—C6—C5	119.59 (15)	C15—C14—H14A	119.4
C1—C6—C7	121.73 (15)	C13—C14—H14A	119.4
C5—C6—C7	118.66 (15)	C14—C15—C10	119.84 (16)
O2—C7—C6	121.70 (16)	C14—C15—H15A	120.1
O2—C7—C8	120.97 (15)	C10-C15-H15A	120.1
C6—C7—C8	117.33 (14)	C13—C16—H16A	109.5
O1—C8—C7	111.48 (14)	C13—C16—H16B	109.5
O1—C8—H8A	109.3	H16A—C16—H16B	109.5
С7—С8—Н8А	109.3	C13—C16—H16C	109.5
O1—C8—H8B	109.3	H16A—C16—H16C	109.5
С7—С8—Н8В	109.3	H16B—C16—H16C	109.5
H8A—C8—H8B	108.0		
C6—C1—C2—C3	-0.5 (3)	C8—O1—C9—O3	4.6 (2)
C1—C2—C3—C4	-0.5 (3)	C8—O1—C9—C10	-176.21 (14)
C1—C2—C3—Br1	179.08 (13)	O3—C9—C10—C11	5.6 (3)
C2—C3—C4—C5	1.2 (3)	O1-C9-C10-C11	-173.61 (15)
Br1—C3—C4—C5	-178.36 (13)	O3—C9—C10—C15	-172.35 (17)
C3—C4—C5—C6	-1.0 (3)	O1-C9-C10-C15	8.5 (2)
C2—C1—C6—C5	0.7 (3)	C15-C10-C11-C12	2.6 (3)
C2—C1—C6—C7	-177.82 (16)	C9—C10—C11—C12	-175.38 (16)
C4—C5—C6—C1	0.1 (3)	C10-C11-C12-C13	0.1 (3)
C4—C5—C6—C7	178.61 (16)	C11—C12—C13—C14	-3.0 (3)
C1—C6—C7—O2	177.11 (17)	C11—C12—C13—C16	175.28 (16)
C5—C6—C7—O2	-1.4 (3)	C12-C13-C14-C15	3.4 (3)
C1—C6—C7—C8	-3.6 (2)	C16-C13-C14-C15	-174.92 (16)
C5—C6—C7—C8	177.94 (16)	C13-C14-C15-C10	-0.8 (3)
C9—O1—C8—C7	75.60 (19)	C11-C10-C15-C14	-2.2 (3)
02 07 09 01			
02-01	-8.3 (2)	C9—C10—C15—C14	175.70 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$	
C16—H16A···O2 ⁱ	0.98	2.42	3.355 (2)	160.	
C16—H16B···O3 ⁱⁱ	0.98	2.53	3.451 (2)	157.	
Symmetry codes: (i) $-x$, $y+1/2$, $-z+3/2$; (ii) $-x$, $y-1/2$, $-z+3/2$.					

Fig. 1

Fig. 2